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THE QUEST TO DESIGN BETTER 
EXPERIMENTS 

Ramya Kumar was starting her doctoral research at the 
University of Michigan when she was tasked with a frustrating 
project. Kumar, a chemical engineering student, was working 
in the lab of professor Joerg Lahann. In 2010, Lahann’s re-
search group described a fully synthetic cell culture plate coat-
ing called PMEDSAH, which is capable of supporting indefinite 
growth and proliferation of human embryonic stem cells in 
defined media. Previously, stem cell biologists were forced to 
culture pluripotent stem cells on murine tumor extracts such as 
Matrigel or on murine embryonic fibroblast monolayers, both of 
which are chemically undefined and variable. 

PMEDSAH—more formally known as poly[2-
(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl)ammonium 
hydroxide]—promised to change the uncertainty of stem cell 
culture. Animal product- and pathogen-free and fully chemi-
cally defined, it could be precisely synthesized and indefinitely 
stored. But Lahann’s team still needed to explore every facet of 
the polymer, including how best to synthesize it. 

Over the next several years, they probed PMEDSAH’s 
properties. “We found there is actually a very interesting re-
lationship between some of the physicochemical properties 
[of the polymer] … and the way they expand pluripotent stem 
cells,” Lahann says. What wasn’t clear, however, was precisely 
how to create polymers with a given set of properties. 

Enter Kumar. She started working with the team’s cell biolo-
gy collaborators, the ones who were actually using the coating 
to culture stem cells. They would report back on each batch’s 
performance, asking for specific tweaks. But with no obvious 
map to guide her, Kumar was effectively making changes in 
the dark. “The way I was going about making coatings was 
very trial-and-error based,” she recalls. “I would try a certain 
set of reaction conditions; sometimes it would work, some-

times it wouldn’t. And I had to go through this very iterative 
process to get the properties I wanted.” For every experiment 
that worked as planned, four or five didn’t. “I felt there had to 
be a better way,” she says. 

As it turns out, there was: A century-old strategy known as 
“design of experiments” (DOE). 

Optimizing experiments
For most life scientists, experimental optimization involves the 
systematic dialing in of control parameters, adjusting one lever 
at a time while holding the others constant until a desired out-
come—maximal protein production, for instance—is achieved. 

Suppose, explains David Muddiman, Jacob and Betty Belin 
professor of chemistry at North Carolina State University, who 
wrote a recent review on DOE, a researcher wanted to ex-
amine two factors that affect the outcome of an experiment: 
temperature and chromatographic flow rate. “What people will 
do is they will study temperature, and they’ll do it very nicely. 
They’ll take the temperature from room temperature up to 100 
degrees Celsius, and they’ll do it in steps of maybe 10 degrees. 
And they’ll say, oh, the optimal temperature is 50 degrees.” 

Then, while holding that temperature constant, they adjust 
flow rate. “They’ll take the flow from 100 nl/min to 5 μl/min, and 
they’ll step that at maybe 500 nl/min increments. And they’ll 
say, oh, the optimal flow rate is 1.2 μl/min.” 

There are two problems with this approach. First, many ex-
periments depend on far more than two variables. It’s relatively 
trivial to test three variables at each of three levels—that’s just 
nine trials. But some studies require tweaking dozens of vari-
ables, the systematic assessment of which rapidly becomes 
impractical. 

First suggested by R.A. Fisher in the 1930s, design of experiments 
(DOE) strategies are finding their way into modern life science 
research. Jeffrey Perkel looks at how DOE is impacting everything 
from genome editing to mass spectrometry.

www.BioTechniques.com9Vol. 61 | No. 1 | 2016

Credit: James McCord

R
EP

R
IN

T 
W

IT
H
 P

ER
M

IS
SIO

N
 O

N
LY



11Vol. 61 | No. 1 | 2016

More significantly, however, the ap-
proach presupposes that each factor is 
entirely independent of every other one, 
and that’s not always the case. It may 
turn out, for instance, that temperature 
and flow rate interact to produce un-
expected outcomes, a so-called “fac-
tor–factor” interaction. In that case, the 
actual best performance may occur at a 
flow rate of 2 μl/min and a temperature 
of 70 degrees—a condition that would 
never be detected using a one-factor-at-
a-time approach. 

DOE is a blanket statistical approach 
where researchers design a matrix with 
all of the variables they wish to test, the 
ranges over which they want to test them, 
and the granularity of those parameters 
(for instance, whether they are relatively 
continuous—such as testing at 10, 20, 
30, 40, and 50 degrees—or coarse—for 
instance testing only high and low flow 
rates. They plug those variables into any 
of a number of commercial statistical 
software packages, which then direct 
the researcher to conduct a series of 
experiments. The researcher inputs the 
data back into the software, and voila! 
The software computes a linear regres-
sion from which it can predict the condi-
tions to achieve a desired outcome. 

Researchers can use either of two 
designs, says Helene Cardasis, a se-
nior research scientist at Thermo 
Fisher Scientific. In a “full factorial de-
sign,” every possible combination of 
parameters is tested—a rigorous, if 
exhausting strategy. The alternative is 
a fractional design, which allows re-
searchers to sample a diverse set of 
variables “without preconceived no-
tions that a parameter is or is not impor-
tant,” says Muddiman. Cardasis, with 
Shan Randall, used that latter strategy 
during a project they conducted with 
Muddiman to optimize data acquisition 
on a quadrupole-Orbitrap hybrid mass 
spectrometer—identifying key variables 
users should consider in their own op-
timization work, such as maximum ion 
injection time. 

As Muddiman explains it, imagine the 
universe of all possible reaction condi-
tions for a given experiment as a rugged 
landscape of mountains, plains, hills, 
and valleys. Using one-factor-at-a-time, 
researchers might identify a local maxi-
mum, the highest elevation reachable 

from their current position. But that’s 
different from the global maximum—the 
very best outcome possible. “You might 
be missing an order-of-magnitude gain 
in your experiment.” DOE can help find 
that global maximum. 

Sometimes, researchers can even 
see it directly—or at least, graphi-
cally. Roy Goodacre, professor of bio-
logical chemistry at the University of 
Manchester, UK, harnesses DOE to op-
timize surface-enhanced Raman scat-
tering (SERS) studies. As part of that 
work, he builds Pareto graphs of signal 
strength versus reproducibility—which 
resembles an arc on which each ex-
perimental outcome is plotted. “You can 
decide where on the so-called ‘Pareto 
front’ you want to be,” Goodacre ex-
plains. 

In 2012, Goodacre’s team used that 
strategy to optimize SERS detection of 
a beta-blocker called propranolol. The 
problem, he explains, is in the design of 
the surface itself—there are many ways 
to create the colloid that forms the ba-
sis of the SERS detection. In total, they 
considered 8000 possible permuta-
tions, of which they ran just 315—a time 
commitment of just 7 days, rather than 
8 months. Still, it was enough to hone 
in on the best conditions. “You can find 
spectra that are absolutely beautiful in 
terms of both reproducibility and signal 
intensity,” he says. 

Roy Goodacre, professor of biological chem-
istry at the University of Manchester, used a 
DOE strategy to optimize his SERS studies. 
Credit: R. Goodacre.
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Experimental heresy
For biologists trained in the philosophy of one 
experiment, one parameter, DOE can seem 
downright heretical, says Todd Sandrin, 
professor of microbiology at Arizona State 
University. Sandrin is an environmental mi-
crobiologist who investigates methods to 
rapidly identify and discriminate bacteria in 
the environment and the clinic.

Suppose, for instance, that testing re-
vealed the presence of E. coli in the water. 
“Did it come from a wildlife source, such as 
avian sources, or did it come perhaps from 
a wastewater treatment plant? Obviously, re-
sponses to each of those might be very dif-
ferent.” 

Sandrin has spent the bet-
ter part of a decade develop-
ing and optimizing methods to 
draw those distinctions, using 
high-speed, high-throughput 
matrix-assisted laser-desorp-
tion ionization time-of-flight 
(MALDI-TOF) mass spectrom-
etry as his technology platform 
of choice. 

Automation is key. “You 
could take 100 or 200 or 300 
protein extracts of different 
bugs, put them in the mass 
spectrometer, hit ‘go,’ and then 
come back a couple of hours 
later and have fingerprints of 
all those different microbes. 
And so automation was won-
derful,” Sandrin says. And yet, 
paradoxically, that very same 
automation seemed to nega-
tively impact reproducibility. 
Sandrin and his team wanted 
to know why. 

At first, they assumed that 
some preset variable was a 
little bit off, so his team set out 
to rectify the problem systematically. But no 
matter which variables they tweaked—such 
as laser intensity or number of laser shots 
per sample—nothing worked. Then Connie 
Borror, a statistician and close colleague at 
ASU, suggested DOE.

“I kind of raised an eyebrow, I think, and 
said, that’s almost heresy,” Sandrin recalls. 
“As a microbiologist, we adjust one variable 
at a time, and it takes a long time. And she 
said, you don’t have to.” 

The team’s DOE design tweaked 5 vari-
ables over 19 trials, focusing on the repro-

ducibility of spectra of the opportunistic 
pathogen Pseudomonas aeruginosa. The 
total time expenditure was just several hours 
of instrument time—far less than the several 
weeks he anticipated spending with the one-
parameter-at-a-time approach. 

In the end, the change was worth it, and 
according to Sandrin, the final data revealed 
some unexpected findings. For one thing, 
though reproducibility tends to rise with in-
creasing laser shots at the MALDI target, there 
is a limit. “About 500 shots is where we started 
to reach that plateau of number of shots ver-
sus reproducibility,” he says. More surprisingly, 
spectral reproducibility tended to increase as 
peak resolution decreased—an observation 
that Sandrin calls “wildly counterintuitive.” 

“What that suggested to us right away 
was that we were probably overemphasiz-
ing the importance of resolution.” By tweak-
ing their acquisition software accordingly, 
Sandrin’s team boosted the reproducibil-
ity of automated data collection from 90% 
to 97%. And not only for Pseudomonas. 
“When we apply those same optimized set-
tings to Klebsiella and Serratia, you can see 
the same tightening up of the data,” he says. 

Emerging applications
DOE is particularly popular in the worlds of 
engineering, pharmaceuticals, cosmetics, 

and the like, where it is used especially to 
optimize manufacturing processes. But as 
Sandrin’s experience shows, the method 
seems to be slowly working its way into the 
life sciences. 

Benjamin Steyer, an MD-PhD student at 
the University of Wisconsin, Madison, used 
DOE to optimize CRISPR/Cas9-mediated 
genome editing in new cell types using 
nonviral liposomal transfection, with the ulti-
mate goal of translating the technique to the 
clinic. “Having the highest gene knock-out 
or gene correction [rate] in a specific organ, 
like the eye or liver, may mean the differ-
ence between a successful therapy and an 
unsuccessful one,” he explains. CRISPR/
Cas9 may seem an odd choice for DOE—

countless researchers have 
successfully applied it in their 
labs—yet as a technique, it is 
“much more parametrically 
complex” than, for example, 
RNA interference, Steyer 
says, as Cas9 and sgRNA 
“can be delivered in different 
forms and at different molar 
ratios.” Among other find-
ings, Steyer’s DOE analysis 
demonstrated that the key 
factor in optimizing delivery in 
his hands was not the nucleic 
acid concentration at all but 
instead the amount and type 
of transfection reagent itself. 

Synthetic biologist 
Douglas Densmore of Boston 
University uses DOE to aid in 
the design and optimization 
of synthetic genetic circuits 
and biosynthetic pathways—
an approach he and his 
team, working with Eric 
Young, Christopher Voigt, 
and D. Benjamin Gordon at 
MIT, codified in a new soft-

ware tool called Double Dutch (www.clotho-
cad.org/doubleDutch/). 

Synthetic biology is fertile ground for 
DOE, says Nicholas Roehner, a postdoc in 
the Densmore lab and lead author on the 
Double Dutch project. One of the goals of 
synthetic biology is to develop tools and 
component libraries so that a researcher 
can rationally design complex genetic cir-
cuits that will behave as anticipated. In 
practice, that process is complicated by 
the fact that some components behave 
differently depending on their context. As 
a result, there’s usually trial and error in-

Results from DOE optimization experiments for CRISPR/Cas9-mediated genome edit-
ing. The desired outcome is loss of red fluorescent protein expression. Credit: B. Steyer.
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volved—and as the circuits get ever 
more complicated, sometimes including 
up to 20 genes and associated control 
elements, those strategies can quickly 
become unmanageable.

DOE, Roehner explains, “can give 
you that regression model that lets you 
make some rough predictions” about 
what combinations to try instead. But 
the output of a DOE is typically a table 
of numbers, such as -1, 0, and +1, which 
correspond to the parameter levels the 
user wants to test. Double Dutch is a 
web-based tool that converts that table 
into instructions for building the com-
mensurate set of genetic circuits. It tries 
to balance the need to use the fewest 
number of circuit elements with other 
requirements, for instance, the fact that 
the same “strong” promoter cannot be 
used over and over again in a single cir-
cuit because of the possibility of homol-
ogous recombination in vivo. “You want 
to use as few parts as possible but at 
the same time not repeat parts within the 
different pathways,” Roehner explains. 

A programmer and “computational-
ist” with a background in bioengineering, 
Roehner was comfortable with statistics 
when he entered the Densmore lab, but 
he had never used DOE. “It sounded 
a little to me like cheating,” he admits. 
When he joined the lab, he envisioned 
building rigorous mathematical models 
based on precise measurements of all of 

the thermodynamic and kinetic variables 
that might possibly drive a particular bio-
logical system. Then reality hit. 

“These days,” he says, “I really think all 
the different approaches of going about 
designing biological systems—whether 
you’re doing DOE, whether you’re doing 
more complicated modeling of genetic 
circuits, or you’re doing, say, a directed 
evolution approach—I think are all very 
complementary to each other. They all 
have their individual strengths and weak-
nesses, and each one is better at solving 
some problems than the other.”

Parameters, parameters
For Kumar, however, DOE already had 
a proven track record. Prior to join-
ing the PhD program in Michigan, 
Kumar had worked at a drug com-
pany in India on pharmaceutical 
process development and product 
scale-up. “I had to use DOE extensive-
ly as part of my job there,” she says. 

By the time she arrived in Ann Arbor, 
she had “forgotten all about” DOE 
though—until she ran headlong into 
PMEDSAH. “It occurred to me that DOE 
has not been considered at all as a prop-
erty-prediction tool in biomaterials,” she 
says. “And I thought, this could be an 
interesting material to demonstrate the 
uses of DOE.”

Rather than running the idea by 
Lahann, Kumar forged ahead, devoting 
a summer to the project. She focused on 
three variables—overall catalyst quanti-
ty, the ratio of one catalyst to another, 
and reaction time. In total, she tested 
45 variable combinations, searching for 
impact on polymer layer thickness and 
wettability. The analysis suggested that, 
contrary to conventional wisdom, cata-
lyst concentration had a big impact on 
the resulting polymer architecture. 

She presented the work in a group 
meeting as a fait accompli. “I didn’t even 
know she was working on that,” Lahann 
says, “she just presented basically al-
most a kind of a rudimentary story of 
how the paper would look like.” 

Lahann thinks the work represents a 
novel application of DOE. The approach 
is commonly used in formulation opti-
mization, small molecule synthesis, and 
batch chemistry, he says. But, “to my 
knowledge, this is one of the first exam-

ples where somebody really uses it to 
optimize … polymers on surfaces.” 

Kumar proved her model worked 
by correctly predicting conditions that 
could create polymer designs the team 
had previously discovered via trial and 
error. Then Lahann asked her to put the 
model to the test by predicting condi-
tions to make a polymer layer that the 
group otherwise could not make—a thin 
but highly hydrophobic layer with a dif-
ferent internal architecture. Again, the 
model delivered.

“We can now deliberately access dif-
ferent regimes, different architectures 
in those polymer coatings at will. And 
by doing that, we can set very different 
properties of those coatings predictively. 
And that’s really amazing,” Lahann says. 

Those findings energized the lab. 
One member has now applied DOE to 
optimize microparticle capsules for cells, 
while another is using it to optimize the 
growth of cancer cells in a bioreactor. 

Anyone can do DOE, Kumar says—
the statistics aren’t difficult, and there are 
tutorials and software to help. All that’s 
required, she concedes, is time—and a 
good working knowledge of your experi-
mental system. “You have to be a real ex-
pert in the process you’re studying.” 

Written by Jeffrey Perkel, Ph.D. 
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David Muddiman, the Jacob and Betty Belin pro-
fessor of chemistry at North Carolina State Uni-
versity, has applied DOE to mass spectrometry 
methods. Credit: North Carolina State University.

As an MD-PhD student at the Univeristy of 
Wisconsin, Benjamin Steyer used a DOE ap-
proach to boost his CRISPR/Cas9 experi-
ments. Credit: B. Steyer.


